明升手机版(中国)

 
作者:刘钝 来源:明升中国app报 发布时间:2024/4/12 10:43:29
选择字号:
读书丨数学“封神榜”榜首,居然是他

 

  ?

“数学文化览胜集”(共四册),李国伟著,高等教育出版社2024年3月出版

“这是一个迷恋排名的时代,也是一个迷恋排名的世界。什么东西都可以拿来排名,没有排名似乎就会不知‘好歹’,就没法作自我判断。这种现象的出现,多少反映了当今信息量的剧增,相形之下个人更为渺小化,更加丧失决策的信心,转向寻求外在‘权威’的评鉴。”套用英国作家狄更斯《双城记》中的著名句式,数学家李国伟开始了他在《谁是今日最有影响力的数学家》一文中富有趣味和数学内涵的讨论,此文收在“数学文化览胜集”第二部《教育篇》中。

文章从《美国手机版与世界报道》2020年公布的世界大学排名开始叙述。在这份名单上,一个地方师范大学在明升中国高校排名中位列73,比前一年突然跃进了13位,而该校的数学学科在国内排名居然夺得冠军,胜过第二名的北京大学与第六名的清华大学。这样的结果难免让人对其可信度产生怀疑。

类似的大学排名还有很多,侧重点也不尽相同,如2003年上海交通大学建立的世界学术排名,重点在于科研能力的比较;2004年英国泰晤士高等教育机构与教育咨询公司QS合作推出的世界大学排名,侧重于教学、科研、知识创造与传播,以及国际交流。2009年两家分道扬镳后,QS又创建了一个拥有自主知识产权的世界大学排名系统。

在具体操作中,系统管理者会依据若干指标的分类,经过加权后适当平均,再以计算结果的得分依序排名。例如《美国手机版与世界报道》数学学科排名的分项指标加权,文献评分比重是65%,声誉评分占比25%,科研成就评分仅占10%。一旦被排名的对象事先知道加权的细节,就有人为影响评分的可能性。以该系统的数学学科加权法为例,网民总结出一个有效提升等级的窍门,就是大量发表灌水论文再加上本校师生的高度互引。

除了人为操作之外,由多项指标的评分汇集成一份最终的线性排名还有一个内在缺陷,这就涉及集合论中的偏序概念。简单地说,序的理论可对集合中元素排序、顺序或排列等的直觉概念抽象化,偏序集合中的排序不必是全部的,就是说不需要保证此集合内的所有对象之间的相互可比较性。

在介绍了满足偏序关系的3个条件之后,作者告诉我们,每个偏序集合都能够扩充成一个如同自然数集那样的全序集合。也就是说,有办法对原来不能比较顺序的一对元素强行区分顺序,并且满足在原来偏序中已经有顺序的x≤y,扩充之后仍然保持x≤y的关系。

另外值得注意的是,这种将偏序扩充为全序的方法不止一种。意思是在原来偏序集合中不能比较顺序的a与b,有可能在某一种扩充中a排在b前面,而在另一种扩充中,b则排在a前面。

回到大学排名,李国伟在文中提醒:“用大学排名来比拟,那种加权然后求某种平均的方法,可说是把数个偏序集合压成一个全序集合的过程。加权与求平均的细节若有变异,所得的全序便有可能产生变化。”

为了避免各类排名中出现人为操作的空间,以及迎合使用者可以自选计量指标的需求,美国推出了一个“学术影响”(AcademicInfluence.com)网站,采取不同以往的策略对各类对象进行排名。

网站自称由学院人士和数据app家组成的团队管理,专门针对名人、学校和科研领域中的不同学科,开发出具有创新性且不受人为操作影响的排名技术,使用机器学习来量度世界上最具学术影响力的人物及相关成果。

然而一旦“机器学习”登堂入室,就大概率会涉及大数据,因此排名的依据就不只是四五项指标,而有可能从非常多的方面来进行量度。另外,机器学习的内在算法对外人基本上是一个黑箱,没有人知道最终结果是怎么来的。正是依赖这点不透明性,学术影响网自诩他们的影响力排名是最为客观公正的。

问题是“影响力”到底是什么意思?该网站认为,这主要表现在吸引他者注意的能力,以及在全球穿透传达的幅度。因此,他们使用大数据的算法,在全球网络空间中寻找对某人或某主题的关联,以及其他对于同类人或事的评估。这些工作涉及大量的数据及其实时更新,明显发挥了人工智能的特色与本领。

另外,在学校排名方面,每个人注重的指标不尽相同。这一系统还允许使用者挑选特别关心的方面,以其数据库为基础,产生最适合自己使用的排名表。

大数据的介入,使得学术影响网的排名有时与一般人的直觉认知不同,以2010—2020年间排出的世界十大最具影响力的数学家为例,其“封神榜”是:1.德夫林(Keith Devlin);2.陶哲轩(Terence Tao);3.斯图尔特(Ian Stewart);4.斯狄瓦(John Stillwell);5.伯尔尼特(Bruce C. Berndt);6.高尔斯(Timothy Gowers);7.萨奈克(Peter Sarnak);8.海尔(Martin Hairer);9.道贝切斯(Ingrid Daubechies);10.怀尔斯(Andrew Wiles)。

这份名单中最怪异的是,最终完成费马大定理证明的怀尔斯勉强跻身前十,另有菲尔兹奖得主陶哲轩、高尔斯、海尔分列第二、第六和第八位,在图像压缩与信号处理的小波变换领域作出重要贡献的比利时女数学家道贝切斯位列第九;排名第一的却是以写数学科普文章与书籍闻名的德夫林,第三、四、五名也都是出色的科普写手或编辑,其中斯图尔特的《上帝掷骰子吗》《改变世界的17个方程》、斯狄瓦的《数学及其历史》《证明的故事》等书都已被译介到明升中国,伯尔尼特则以整理和编辑印度传奇数学家拉马努金的笔记出名,经他整理的五大卷《拉马努金笔记》中文本已全部出版。

回过头来看位居榜首的德夫林,他曾常年为美国数学协会(MAA)会刊撰写“德夫林视角”专栏,在数学教育界享有很高的知名度。据说他在得知自己位居首位时也感到意外。

为了平息数学家的怨气,他对这一结果给出了一个自降身段的解释,称自己能够脱颖而出是因为活动范围比一般数学家更广,不仅有学术方面的贡献,还到处发表数学普及作品,又很早投身线上数学教育,而人工智能算法“不舍日夜”地在网络空间爬梳,自然容易搜见他的名字,这样他就在“机器学习”那里增加了影响力。

至于评价指标的多寡与曝光程度的关系,德夫林借助一个算不上精确却颇为“直观”的高维正方体模型加以说明。

高维正方体的一个特性就是随着维度的增加,正方体内部整数坐标点数所占的比例会越来越小,这一现象不容易为人理解,因为普通人无法想象高维正方体的形象。为此德夫林发挥了高超的科普本领,解释了高维正方体及其与评估排名的关系。

按照他的简化模型估算,只要针对200项彼此独立的评判指标来量度,就会有98%的人在至少一项指标上“出众”;这里“出众”的意思是指在这项指标上排名在前1%或后1%,因而“出众”并不绝对意味着出类拔萃。

假如只有一项评价指标,那么可以把结果看成一条线段,再将线段划分为100个等级,最低的1%与最高的1%为“出众”,占整体等级(小线段,以下一律称为“点”)的2%,而“寻常”的点则为98%。

如果需要考虑两项指标,就得使用100×100的正方形,此时“寻常”等级占据98×98=9604个点,而“出众”等级形成正方形外缘的一个方框,占据10000-9604=396个点,比例则为396/10000=0.0396,也就是总量的3.96%,比一维情况中“出众”点的比例要高。

指标增加到3个,对应的图形就是三维空间的立方体,共涵盖1000000个点,代表“寻常”的内部点有98×98×98=941192个,代表“出众”的外缘(即立方体的表面)点有1000000-941192=58808个,所占比例为58808/1000000=0.0588,也就是5.88%,比二维时的比例又提高了。

如果维度持续上升,高维正方体的形象变得难以想象,同时需要处理高次幂的计算,但是在当今这不算什么难事。借助一些公开的计算软件,德夫林计算出,当指标为10个时,10维正方体外缘的“出众”点所占比例是18.29%;当指标为100个时,100维正方体外缘的“出众”点所占比例是86.74%;而当指标为200个时,200维正方体外缘的“出众”点所占比例达到98.24%,这就验证了上面的那个结论:采用200项彼此独立的指标来量度,就会有98%的人在至少一项指标上非同寻常。

在人工智能日新月异迅猛发展的时代,引入极大量的评价指标在技术上不成问题,将评价对象按指标排序,在某些指标上出现奇葩结果也不足为怪了。就个人而言,如果针对尽可能多的指标排序,那么他在社会上的位置就可依赖这种因指标任意增加而与时俱进的评价系统来判定。果若如此,个人的行止就被约化到一张排行榜上了,又何异于机器人?

当前高校与科研机构中评价文化大行其道,各类排行榜也成了管理者“祭旗”的法宝。此刻听听李国伟的忠告是必要的,他在文末这样写道:“特别在教育部门,排名其实容易固化人的偏见,使用时不可不慎。”

(作者系清华大学app史系特聘教授、明升中国app院自然app史研究所研究员)

《明升中国app报》 (2024-04-12 第3版 读书)

(原标题:数学“封神榜”榜首,居然是他——读李国伟“数学文化览胜集”有感(二))

 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
相关手机版 相关论文

图片手机版
>>更多
 
一周手机版排行
 
编辑部推荐博文