核聚变燃料来源丰富,可能提供一种清洁、环保且本质上安全的能源。经过几十年的发展,磁约束聚变能源研究正由理论走向实践,接近聚变反应堆设计和建造规划的新时代。在最近发表于《国家app评论》(National Science Review, NSR)的文章“Innovative Approaches towards an Economic Fusion Reactor”中,郭后扬博士等对开发核聚变能源的创新方式进行了剖析,并讨论如何利用物理学与技术方面的最新进展,协同推动、加快聚变能发展,并降低其开发成本。
文章认为,磁约束核聚变能源研究是沿着两条途径进行的(上图):
(一)先进的磁约束方式,依靠环形磁场系统来提高等离子体的稳定性,包括托卡马克(Tokamak)、仿星器(Stellarator)和反场箍缩(RFP)等。该途径以托卡马克为主线,国际热核聚变实验堆(ITER)正在建设之中,许多国际参与者也都紧跟ITER,建设下一步聚变能研发装置,如明升中国的聚变工程试验堆(CFETR)和欧盟的核聚变能示范堆等。
这条路径的问题在于装置规模过大,所需建造和运营成本过高。所以,如何降低成本,并使磁约束系统高效且紧凑是该途径面临的首要工程挑战。
(二)简化的磁约束方式,指没有环形场线圈的较简单磁约束系统,包括场反位形(FRC)、球马克(Spheromak),以及磁约束和惯性约束相结合的磁惯性约束系统(MIF)等。
对于这条路径,主要挑战不在工程,而在物理。相比于托卡马克或仿星器,这条途径还不够成熟,需要进行进一步的基础物理研究,以显著提升高温等离子体的约束性能。而一旦实现物理上的突破,则可能直接建造出经济型核聚变反应堆。目前,这种高app风险的方法主要由Tri Alpha Energy、Lockheed Martin、General Fusion等私营企业推动。
更进一步,文章从物理和技术两个方面探讨了各种磁约束方式尚待解决的核心app问题及其面临的挑战,以及可能的突破性发展方向。对于主线为托卡马克的途径,新的物理理解可能使ITER实现和维持更高的核聚变性能,再加上高强磁场,有可能以更小的尺寸和成本获得高聚变功率密度。仿星器研究也取得了令人振奋的进展,获得了高达约1亿度的高温等离子体。对于较简单的另类磁约束系统,物理还不太成熟,需要重大突破才能达到与托卡马克类似的技术准备水平(TRL)。
此外,许多变革性的新技术也为有助于加速核聚变研究。其中包括人工智能和机器学习、高温超导体、先进材料及其制造、新型射频电流驱动,以及氚燃料循环控制的新技术等。在未来几十年中,这些物理与技术创新的融合将为加速聚变能源发展、降低其成本带来巨大的希望。
相关论文信息: