(封面图片:酵母基因IMD2负责编译三磷酸鸟苷(GTP)生物合成过程中的限速酶,并且受到反馈调节。当GTP浓度高时,IMD2 mRNA产量较低(图中左侧柱体所示);相反的,当GTP浓度较低时,IMD2 mRNA产量则较高(图中右侧柱体所示)。图片提供:Elaine W. Brow)
酵母基因IMD2负责编译三磷酸鸟苷(GTP)生物合成过程中的限速酶,并且受到反馈调节。GTP是DNA和RNA合成所必需的分子,当GTP水平较高时,IMD2 mRNA产量较低,而相反的,当GTP的浓度较低时,IMD2 mRNA产量则较高。在2008年7月25日出版的《分子细胞》(Molecular Cell)上,来自美国威斯康星大学麦迪逊分校明升手机版和公共健康学院的Kuehner以及Brow发表了他们的最新研究结果,文章称,他们找到了GTP通过RNA聚合酶II从而直接改变IMD2促进子起始位点选择的证据。
鸟嘌呤核苷酸负性调节酵母黄嘌呤核苷磷酸脱氢酶(inosine monophosphate dehydrogenase IMPDH)的mRNA合成,但是这一过程的内部机制并不明了。IMPDH催化GTP生物合成过程的第一步,它是GTP从头合成的关键酶,而其表达的反馈控制维持着嘌呤核苷酸的稳定平衡。在研究中app家发现,RNA聚合酶II(Pol II)能对于GTP的浓度做出反应。当体内GTP充足时,RNA聚合酶II会启动TATA框近基“G”位点(TATA box-proximal “G” site)处的IMPDH基因(IMD2)的转录,从而产生削弱的转录产物。而当GTP含量不足时,RNA聚合酶II启动处位于下游“A”位点,从而包围调控终止因子以产生IMPDH mRNA。
在上游位点,依赖于GTP浓度的启动过程的一个主要决定因素即是鸟嘌呤是否出现在转录的第一、第二个位置。Rpb1以及TF IIB的变异会通过改变起始位点选择来中断IMD2的调节。较高浓度的GTP产生不稳定的弱化转录产物,而低浓度GTP产生稳定的mRNA,因此,RNA聚合酶II的启动能通过起始核苷酸浓度进行改变。(明升手机版(明升中国) 何宏辉/编译)
(《分子细胞》(Molecular Cell),Vol 31, 201-211, 25 July 2008,Jason N. Kuehner and David A. Brow)
更多阅读(英文)