美国物理学家最近成功地让单个光子携带的信息量达到1.63比特,这一数字打破了此前单个光子最多携带1.585比特信息的纪录。该研究成果有助于卫星通信的效率的最大化。相关论文3月23日在线发表于《自然—物理学》(Nature Physics)上。
从理论上而言,如果发射器能够调整单个光子的波长,而接收器能够高精度地测量和分辨该波长,那么一个光子能够携带的信息量可以轻松达到几个比特。不过,现行的技术还无法对单个光子进行上述处理。
实际中的单光子通信(single-photon communication)利用了光的另一特性——偏振(对光子而言就是极化作用)。即随着其电场的空间变化,每个光子在某一时刻必然具有两种极化状态之一(0或1)。简单的光学设备就能“读出”这种极化属性,因此,在最通常的情况下,一个光子可以编码入1比特信息。
不过,app家已经可以利用非线性的量子纠缠态来实现所谓的量子密集编码(quantum dense coding),从而增加单个光子携带的内容。其思路就是在光子的终极接收器A上都预备一对处于纠缠态的光子,并向发射器B传送其中之一。当B向A发回其信息光子时,通过测量该光子对的状态,就能得到四种可能性,这实际上就是2个比特的信息量。然而,由于普通的光学设备无法完全区分4种纠缠状态,最优也只能区分3种情况,这相当于单个光子携带了1.585比特信息。
在最新的研究中,美国伊利诺伊大学香槟分校的Julio Barreiro(第一作者)和同事为光子对的纠缠添加了一个新的自由度,即超纠缠(hyper-entangled)。两个光子不仅拥有自旋纠缠,而且被赋予了轨道角动量,这让它以螺旋状轨迹运动。虽然该过程并没有额外编码什么信息(携带信息的依然是极化方向),但这一光子“扭曲”能够让接收端梳理出密集编码方式中的4种状态。因此Barreiro说,“原则上我们现在可以令每个光子携带2比特信息了。”
由于目前的偏振分光器(polarising beam-splitters)等光学设备尚存缺憾,研究人员在实验中并没有实现完美的2比特,只达到1.63,但这一数字也仍然打破了此前的纪录。研究人员现在正在试图进行补偿,并尝试“挤入”更多的信息。
Barreiro表示,新的研究成果有助于实现卫星通信效率的最大化。3月初,奥地利和意大利app家首次证实了从地面向卫星进行单光子通信的可行性()。不过,Barreiro认为,由于各种大气干扰因素(骚动、灰尘和水蒸气等)会破坏光子对的相干性,新的扭曲光技术可能在卫星间通信中更有潜力。
论文高级作者、利诺伊大学香槟分校的约翰•巴丁教授Paul Kwiat表示,“现在距最初实验实现量子通信已有10多年,但信道容量(channel capacity)仍是一个根本性的限制。”当然,光子通信的未来还有很大空间。如果能够将这种扭曲应用于编码信息,可能每个光子所能携带的信息还会超过2比特。(明升手机版(明升中国) 任霄鹏/编译)
(《自然—物理学》(Nature Physics),doi:10.1038/nphys919,Julio T. Barreiro, Tzu-Chieh Wei & Paul G. Kwiat)
更多阅读(英文)