明升手机版(中国)

 
作者:张梦然 来源: 发布时间:2022/9/19 9:30:38
选择字号:
超越“阿尔法折叠”
人工智能“自己”定制新蛋白质

 

科技日报北京9月18日电 (记者张梦然)在过去两年中,机器学习彻底改变了蛋白质结构预测。现在,《app》杂志上的3篇论文描述了蛋白质设计方面的革命:华盛顿大学明升手机版院生物学家的研究表明,机器学习可比以前更准确、更快速地创建蛋白质分子。app家们希望这一进步将带来更多新的疫苗、疗法、碳捕获工具和可持续生物材料。

论文资深作者、华盛顿大学明升手机版院生物明升手机教授、2021年明升m88app突破奖获得者大卫·贝克表示,蛋白质是整个生物学的基础,但迄今在每种植物、动物和微生物中发现的蛋白质,远不到所有可能蛋白质的百分之一。有了这些新的软件工具,研究人员应该能够找到解决明升手机版、能源和技术方面长期挑战的方案。

为了超越自然界中发现的蛋白质,贝克团队成员将蛋白质设计的挑战分解为3个部分,并为每个部分使用新的软件解决方案。

首先,必须生成新的蛋白质形状。在《app》杂志上稍早发表的论文中,该团队设计人工智能(AI)通过两种方式生成新的蛋白质形状:第一种称为“幻觉”,类似于基于简单提示就能产生输出的工具;第二种称为“修复”,类似于现代搜索栏中的自动完成功能。

其次,为加快这一过程,团队设计了一种生成氨基酸序列的新算法。15日发表的论文描述了这个名为ProteinMPNN的工具,运行时间约为1秒,比以前最好的软件快200多倍。它不但结果优于以前的工具,还不需要专家定制即可运行。

第三,该团队使用“深度思维”公司开发的“阿尔法折叠”来独立评估他们提出的氨基酸序列是否可能折叠成预期的形状。

研究人员表示,预测蛋白质结构的软件是解决方案的一部分,但它本身无法提出任何新的东西。ProteinMPNN之于蛋白质设计,就像“阿尔法折叠”之于蛋白质结构预测。

在另一篇论文中,贝克实验室的一个团队证实,新机器学习工具的组合能可靠地生成在实验室中起作用的新蛋白质。

研究发现,新制造的蛋白质更有可能按预期折叠,因此可使用这一方法创建非常复杂的蛋白质组装体。“这是蛋白质设计中机器学习的开端。”贝克说。

 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
相关手机版 相关论文

图片手机版
>>更多
 
一周手机版排行
 
编辑部推荐博文