天然光合作用水氧化中心的放氧复合物,锰簇(左);锰簇催化剂的S态循环(右) 西湖大学供图
锰簇S1-S3态的结构异构化行为(上);天然光合作用水氧化催化中心在放氧前期的可逆异构化过程(下) 西湖大学供图
锰簇在S3Yz●态的可逆结构异构化 西湖大学供图
日前,西湖大学人工光合作用与太阳能燃料中心孙立成实验室在探索这一未解之谜的过程中取得阶段性进展。他们利用超级计算机和量子力学理论,揭示了天然光合作用中O-O键产生前的明升手机催化过程。研究成果以《O-O键形成之前自然界水氧化催化剂的可逆异构化》为题发表在《美国明升手机会志》上。
目前已经探明,光合作用经过光反应和暗反应两个阶段。简单来说,光反应阶段产生氧气,并释放出电子和质子,为接下来的暗反应准备好ATP、NADPH这样的能量载体或辅酶。而接下来暗反应阶段,主角就是著名的卡尔文循环——如同一个世界上最小的能量转换工厂,把空气中的二氧化碳固定成有机物,再聚合成粮食。
孙立成团队的研究涉及光反应阶段水分解的核心催化剂:锰簇。它由锰钙氧Mn4CaOx(x代表了氧原子的数量变化)构成,形状看上去像一把扭曲的椅子,但正是这种扭曲的结构,可能预示着它的不稳定性,容易和水发生作用。
神奇的是,锰簇催化剂需要经历大致5个状态(即S0、S1、S2、S3、S4态,“0-4”代表锰簇的氧化态从低到高)的变化,才能最终创造氧气,这就如同大自然设置了一套非常严格的密码装置,有条不紊地实现其功能。锰簇在S4态释放出氧气后,再回到S0态,整个过程称为“S态循环”,实现水的催化氧化。
这是一把变化莫测的椅子。app界目前已经证实的是,S1态和S2态存在开立方和闭立方两种异构体,可以相互转化;在S3态,只能由闭立方向开立方转变。而目前app家对“最关键一步”S4态的结构依然不甚了解。
这一次,孙立成团队通过庞大而复杂的计算,预测锰簇在S3态到S4态过渡时,也就是在S3Yz●(Yz●代表酪氨酸自由基)态时存在可逆异构化过程。这相当于揭开了“终极奥秘”S4态之前的一层面纱,它和S4态在时间上紧密衔接,可能构成了氧气形成的决速步骤,也对O-O键形成的机理产生重要影响。
这项研究首次发现,S3态锰簇被高度抑制的互变异构将在紧随其后的S3Yz●态完全恢复,这得益于酪氨酸自由基Yz●形成后锰离子的一个配体水分子的去质子化过程。该质子的释放能够改变锰离子和配体之间的配位强度,促进了闭立方结构的产生,并与开立方结构处于可逆互变异构的动态明升手机平衡。
对于S0、S1、S2和S3态,人们可以通过X射线自由电子激光技术捕获其形态,但仍无法准确涉及对于S3Yz●态这样的瞬时状态,而目前量子力学计算模拟的方法能够很好地预测该状态锰簇结构变化的信息。孙立成团队通过密度泛函理论(DFT)计算获得了这一预测。
孙立成团队研究发现的O-O键形成之前催化剂结构变化的奥秘,为进一步揭开天然光合作用水氧化机理的最后一层神秘面纱做了铺垫。同时,该研究也对人工光合作用高效水氧化催化剂的设计、合成提供了新的思路,对构建更加高效的人工光合作用制备太阳能燃料体系,如水分解制备绿氢,二氧化碳还原制备甲醇,氮气还原制备液氨等具有指导意义,为最终实现“碳达峰碳中和”提供可能的方向。
据悉,西湖大学教授孙立成为通讯作者,西湖大学博士后郭宇为第一作者,西湖大学为第一通讯单位,该工作与瑞典学者合作完成。
相关论文信息:http://doi.org/10.1021/jacs.2c03528
版权声明:凡本网注明“来源:明升中国app报、明升手机版(明升中国)、app手机版杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、明升头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。