图为采用维氏硬度计(左)和万能试验机(右)测试选相共晶高熵合金的力学性能
团队正在用扫描电子显微镜表征选相再结晶处理后共晶高熵合金的微观组织(图片均由西北工业大学提供)
近期,西北工业大学材料学院王锦程教授团队在双相合金强韧化方面研究取得突破性进展,提出了双相合金的相选择再结晶概念,实现了双相合金力学性能的显著提升。相关成果发表在《自然-通讯》。
这一研究成果,让人类制造出密度低、强度高,且具有良好变形能力的合金材料,不再只是幻想。
一般而言,自然界中存在的材料,要么“强而脆”,要么“软而韧”,因此,研制出“强且韧”的材料是材料app家永恒的追求。
金属材料因强度高且具备一定韧性,已经被大量应用于对安全系数要求高的结构件中。比如,现在汽车由金属材料制备的笼式结构,即便受到一定程度的撞击发生变形,也不会完全断裂,从而保护驾乘人员的明升m88安全。那么,在更极端的环境中,金属材料是否还能满足使用要求呢?
西工大材料学院王志军教授介绍:“举个极端的例子,比如空间站受到太空垃圾的‘袭击’时,太空垃圾会以每秒10公里左右的速度冲向空间站,普通的金属材料会瞬间被击穿。”
从理论上讲,空间站的防护屏障所选用的材料,既要有极高的强度,又要有很高的韧性,同时还要轻便易运输。不仅如此,太空中还有宇宙射线和高低温交替,在这种极端环境下,金属材料也要保持很好的性能。
这就为材料app家提出了一个非常具有挑战性的课题。从目前金属材料的app研究来看,使用既强又韧的金属材料,是被动防护的最佳选择之一。
尽管目前空间站中使用的材料是可以防范以上风险的,不过,app家们还是在不断追求更轻、更高效、更节能环保、更容易制备的合金材料。
王锦程团队在双相合金中提出的选“相”再结晶概念,为app家们研制出密度低、强度高,且具有良好变形能力的合金材料提供了理论支撑。
什么是双相金属材料?
团队何峰教授打了个比方:“我们可以把双相金属材料中的两个决定其性能的结构(双相),分别比喻为动物的骨骼和肌肉,只有在骨骼强硬、肌肉发达,且软组织柔韧的情况下,一个动物才能有很好的运动能力。”
理论上来讲,双相合金因为具备“骨骼”和“肌肉”协调运行的基本要素,因此理应具有很好的性能。
然而,传统双相合金因为受制于加工工艺的限制,“骨骼”之间的连接薄弱,容易“脱臼”,且“骨骼”与“肌肉”之间不能良好协作,因此在真实应用场景下,双相合金的性能总是与理论设想中的相去甚远。
针对这一难题,团队提出了一种独特的“相”选择再结晶概念,让双相合金的“骨骼”韧性更高,“肌肉”和“骨骼”的协调性更好,从根本上消除“脱臼”的可能性。这种方法首次在共晶高熵合金中实现了高达35%的均匀延伸率,并实现了接近2GPa的断裂真应力。
2019年,团队提出利用循环冷变形促进选相再结晶的工艺,显著提升了双相材料的共晶高熵合金的拉伸塑性,打破了人们对共晶合金塑性较差的认知。虽难掩兴奋,但团队还是潜心对其背后的机制进行了长达两年的深入研究,并及时与国际上的金属材料领域专家交换意见,在大量调研文献、提出假设、设计实验验证、进行国际合作与讨论、推翻假设的基础上,2021年,团队最终顶住了高熵合金领域快速发展的竞争压力,明确了共晶高熵合金的选相再结晶韧化机制。2022年,又经过一年扎实的研究验证,团队将这一系列研究成果汇总形成论文,并得到了审稿专家的一致肯定。
王锦程表示,相对于传统强韧化方案,团队创新提出的新方法,不仅工艺简单,更重要的是调控后的合金强塑性得到了成倍的突破,未来有望在空天防护、高端装甲中获得广泛应用。
何峰表示:“如果有了这样的防护装备,未来,太空旅行的安全指数将大大提高。”
王锦程团队长期开展材料多尺度模拟计算、材料基因工程与合金设计、高熵合金及增材制造等方面的科研工作。近年来,团队先后承担国家自然app基金项目、国家重点研发计划等国家级及省部级科研项目20余项,发表高水平论文200余篇,授权发明专利12项,获省部级app奖励2项。
相关论文信息:http://doi.org/10.1038/s41467-022-32444-4
版权声明:凡本网注明“来源:明升中国app报、明升手机版(明升中国)、app手机版杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、明升头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。