|
|
雒建斌院士:“螺旋桨表界面特性研究进展与app挑战” |
|
螺旋桨表界面特性研究进展与app挑战
朱漫福 马丽然 雒建斌
清华大学 摩擦学国家重点实验室,北京
雒建斌 清华大学教授,长江学者,明升中国app院院士,Friction主编。长期从事纳米摩擦学和纳米制造研究。
朱漫福 清华大学摩擦学国家重点实验室在读博士研究生。研究方向为表界面特性调控和螺旋桨性能优化。
摘 要
螺旋桨是船舶和水下航行体的常用推进装置,通过旋转做功产生推力。螺旋桨性能提升可以减少能源消耗和运行成本、提高乘船舒适性和舰船声隐身性,在民用和军用领域有显著需求。表界面特性是影响螺旋桨性能的关键因素,然而,目前对螺旋桨表界面特性的研究还存在诸多不足。本文立足于螺旋桨的效率和空化空蚀性能,介绍了表面形貌和表面润湿性对螺旋桨性能的影响规律和研究进展,分析了螺旋桨表界面特性研究中存在的关键app问题,最终对螺旋桨未来发展趋势进行了展望。
关键词:螺旋桨;表面形貌;润湿性;效率;空化
参 考 文 献
[1] Xu MC, Grabowski A, Yu N, et al. Superhydrophobic drag reduction for turbulent flows in open water. Physical Review Applied, 2020, 13(3): 034056.
[2] 黄胜. 船舶推进节能技术与特种推进器. 第2版. 哈尔滨: 哈尔滨工程大学出版社, 2007.
[3] 胡健. 螺旋桨空泡性能及低噪声螺旋桨设计研究. 哈尔滨: 哈尔滨工程大学, 2006.
[4] 刘竹青, 丁恩宝, 陈奕宏. 某散货船模型螺旋桨噪声性能试验研究. 明升中国造船, 2011, 52(S1): 83—88.
[5] 侯晓琨, 吴家鸣, 戴鹏. 回转体尾部形状对导管螺旋桨的水动力性能影响分析. 广州航海学院学报, 2020, 28(1): 14—19+65.
[6] Suryanarayana C, Satyanarayana B, Ramji K, et al. Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel. International Journal of Naval Architecture and Ocean Engineering, 2010, 2(1): 24—33.
[7] 何东亚, 万德成. 不同设计参数下对转桨水动力性能研究. 海洋工程, 2018, 36(2): 19—29.
[8] 盛振邦. 船舶原理(下册). 第2版. 上海: 上海交通大学出版社, 2019.
[9] Wang JD, Wang B, Chen DR. Underwater drag reduction by gas. Friction, 2014, 2(4): 295—309.
[10] Daniello RJ, Waterhouse NE, Rothstein JP. Drag reduction in turbulent flows over superhydrophobic surfaces. Physics of Fluids, 2009, 21(8): 085103.
[11] Henoch C, Krupenkin T, Kolodner P, et al. Turbulent drag reduction using superhydrophobic surfaces// American Institute of Aeronaustics and Astronaustics 3rd AIAA Flow Control Conference. California: AIAA, 2006: 3192.
[12] Park H, Sun GY, Kim CJ. Superhydrophobic turbulent drag reduction as a function of surface grating parameters. Journal of Fluid Mechanics, 2014, 747: 722—734.
[13] Xu MC, Yu N, Kim J, et al. Superhydrophobic drag reduction in high-speed towing tank. Journal of Fluid Mechanics, 2021, 908, A6. doi:10.1017/jfm.2020.872.
[14] Balasubramanian AK, Miller AC, Rediniotis OK. Microstructured hydrophobic skin for hydrodynamic drag reduction. AIAA Journal, 2004, 42(2): 411—414.
[15] Aljallis E, Sarshar MA, Datla R, et al. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Physics of Fluids, 2013, 25(2): 351—412.
[16] Bidkar RA, Leblanc L, Kulkarni AJ, et al. Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Physics of Fluids, 2014, 26(8): 263—290.
[17] Sooraj P, Jain S, Agrawal A. Flow over hydrofoils with varying hydrophobicity. Experimental Thermal and Fluid Science, 2019, 102: 479—492.
[18] Choi H, Lee J, Park H. Wake structures behind a rotor with superhydrophobic-coated blades at low Reynolds number. Physics of Fluids, 2019, 31(1): 015102.
[19] 朱晶, 姜元军, 何大川. 船用螺旋桨典型腐蚀类型与防护措施研究进展. 腐蚀app与防护技术, 2019, 31(4): 443—448.
[20] AkzoNobel. Intersleek1100SR. (2013-02)/[2021-03-12]. http://www.international-marine.com/product/intersleek-1100sr.
[21] AkzoNobel. Intersleek900. (2010-08)/[2021-03-12]. http://www.international-marine.com/product/intersleek-970.
[22] Pechook S, Sudakov K, Polishchuk I, et al. Bioinspired passive anti-biofouling surfaces preventing biofilm formation. Journal of Materials Chemistry B, 2015, 3(7): 1371—1378.
[23] Epstein AK, Wong TS, Belisle RA, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(33): 13182—13187.
[24] Hwang GB, Page K, Patir A, et al. The anti-biofouling properties of superhydrophobic surfaces are short-lived. Acs Nano, 2018, 12(6): 6050—6058.
[25] Atlar M, Glover EJ, Candries M, et al. The effect of a foul release coating on propeller performance// International conference on Marine Science and Technology for Environmental Sustainability (ENSUS 2002). Newcastle upon Tyne: University of Newcastle upon Tyne, 2002.
[26] Korkut E, Atlar M. An experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers. Ocean Engineering, 2012, 41: 1—12.
[27] Candries M, Atlar M, Mesbahi E, et al. The measurement of the drag characteristics of tin-free self-polishing co-polymers and fouling release coatings using a rotor apparatus. Biofouling, 2003, 19(S1): 27—36.
[28] 陈大融. 空化与空蚀研究. 明升中国基础app, 2010, 12(6): 3—7.
[29] Holl JW. The inception of cavitation on isolated surface irregularities. Journal of Basic Engineering, 1960, 82(1): 169—183.
[30] McCormick BW. On cavitation produced by a vortex trailing from a lifting surface. Journal of Basic Engineering, 1962, 84(3): 369—378.
[31] Kawanami Y. Mechanism and control of cloud cavitation. Journal of Fluids Engineering, 1997, 236(4): 788—794.
[32] 戴月进, 张媛媛, 黄典贵. 水翼表面粗糙带对空化抑制效果的数值研究. 工程热物理学报, 2012, 33(5): 770—773.
[33] Churkin SA, Pervunin KS, Kravtsova AY, et al. Cavitation on NACA0015 hydrofoils with different wall roughness: high-speed visualization of the surface texture effects. Journal of Visualization, 2016, 19(4): 587—590.
[34] 刘诗汉, 陈大融. 粗糙表面的空蚀机制研究. 润滑与密封, 2009, 34(3): 6—8.
[35] 蒋娜娜, 刘诗汉, 陈大融. 硅片空蚀实验中表面粗糙度和润湿性的影响. app通报, 2008, (5): 598—604.
[36] 蒋娜娜, 徐臻, 周刚, 等. 加工方法和材料种类对空蚀结果的影响. 润滑与密封, 2007, (5): 12—15.
[37] 李永健. 空蚀发生过程中表面形貌作用机理研究.北京: 清华大学, 2009.
[38] Harvey EN, McElroy WD, Whiteley AH. On cavity formation in water. Journal of Applied Physics, 1947, 18(2): 162—172.
[39] Belova V, Gorin DA, Shchukin DG, et al. Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces. Acs Applied Materials & Interfaces, 2011, 3(2): 417—425.
[40] Ye YM, Klimchuk S, Shang MW, et al. Acoustic bubble suppression by constructing a hydrophilic coating on HDPE Surface. Acs Applied Materials & Interfaces, 2019, 11(18): 16944—16950.
[41] Klimchuk S, Shang MW, Samuel MS, et al. Robust hybrid hydrophilic coating on a high-density Polyethylene surface with enhanced mechanical property. Acs Applied Materials & Interfaces, 2020, 12(28): 32017—32022.
[42] Petkovek M, Hoevar M, Gregori P. Surface functionalization by nanosecond-laser texturing for controlling hydrodynamic cavitation dynamics. Ultrasonics Sonochemistry, 2020, 67: 105126.
[43] Haosheng. C, Jiang. L, Fengbin. L, et al. Experimental study of cavitation damage on hydrogen-terminated and oxygen-terminated diamond film surfaces. Wear, 2008, 264(1—2): 146—151.
[44] Fahim J, Hadavi SMM, Ghayour H, et al. Cavitation erosion behavior of super-hydrophobic coatings on Al5083 marine aluminum alloy. Wear, 2019, 424: 122—132.
[45] Ma LW, Wang JK, Zhang ZJ, et al. Preparation of a superhydrophobic TiN/PTFE composite film toward self-cleaning and corrosion protection applications. Journal of Materials Science, 2021, 56(2): 1413—1425.
[46] Wang N, Xiong DS, Deng YL, et al. Mechanically robust superhydrophobic steel surface with anti-Icing, UV-durability, and corrosion resistance properties. Acs Applied Materials & Interfaces, 2015, 7(11): 6260—6272.
[47] Liu T, Chen S, Cheng S, et al. Corrosion behavior of super-hydrophobic surface on copper in seawater. Electrochimica Acta, 2007, 52(28): 8003—8007.
[48] 林昌健, 田昭武. 金属腐蚀与防护机理研究中的现代电明升手机新方法. 明升中国app基金, 1993, 7(2): 106—110.
[49] Gonzalez-Avila SR, Nguyen DM, Arunachalam S, et al. Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS). Science Advances, 2020, 6(13): eaax6192.
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。