|
中科院西北生态资源研究院 |
科研人员量化冰川表面主要杂质吸光能力 |
|
14日,记者从中科院西北生态资源研究院获悉,该院冰冻圈app国家重点实验室康世昌研究员团队与中科院青藏高原研究所、兰州大学等单位合作研究发现,虽然在600nm波段,冰川冰尘中有机质和黑碳的吸光性较高,但在450nm波段多数冰尘中针铁矿的吸光能力已高于黑碳。该成果日前发表于冰冻圈著名国际期刊《冰冻圈》(The Cryosphere),为准确评估吸光性杂质对冰川消融的影响奠定了基础。
20世纪以来,全球多数山地冰川出现退缩,且近期呈现加剧趋势,尤其在我国青藏高原更为明显。山地冰川特别是其消融区表面往往存在大量暗色吸光杂质,即冰尘。冰尘组成相对复杂,包括矿物沙尘颗粒、黑碳、有机质及微生物等。冰尘能够降低冰川表面反照率,吸收更多太阳辐射,从而成为影响冰川物质平衡的重要因素之一。目前关于冰川反照率影响因素的研究主要集中在黑碳等,对冰尘的矿物组分及其吸光性研究尚鲜见报道。估算冰川表面黑碳、有机碳和沙尘的吸光贡献具有很大挑战性。
在广泛应用的雪冰辐射模拟软件中,输入参数主要为沙尘质量浓度,而对沙尘的组成特征缺乏考虑。沙尘的吸光能力依赖于其中的铁氧化物,如针铁矿、赤铁矿等。因此研究青藏高原冰川表面冰尘中铁氧化物的矿物形态、光学特征能够为完善、改进雪冰辐射效应模拟提供关键输入参数。目前常规方法难以准确测定复杂冰尘样品中赤铁矿和针铁矿的含量。
该论文的通讯作者康世昌介绍,课题组针对野外采集的5条青藏高原冰川冰尘样品,利用漫反射光谱DRS准确测量了冰尘中针铁矿和赤铁矿含量,发现铁氧化物占总铁的31%-70%,其中针铁矿含量显著高于赤铁矿,占铁氧化物的81%-98%。同时对冰尘样品的黑碳含量进行了热光法测定。在此基础上,利用积分光谱仪,获得了冰尘整体样品、针铁矿和赤铁矿的吸光特征,并进一步计算了冰尘样品中针铁矿、赤铁矿、黑碳和有机质等吸光组分对冰尘总吸光的相对贡献。结果显示,在600纳米波段有机质和黑碳是最为主要的吸光组分,而在450纳米波段铁氧化物的贡献迅速增加,在多数冰川冰尘中针铁矿的吸光已高于黑碳。