明升手机版(中国)
 
作者:彬彬 来源:新浪科技 发布时间:2010-8-13 9:51:15
选择字号:
计算机计算证明还原任意魔方最多只需20步

app家们通过计算机计算和证明,任意组合的魔方都可以在20步内还原。 


尽管拥有43,252,003,274,489,856,000种不同的可能组合状态,但魔方都可以在20步内还原。 

相信许多人都玩过魔方,但是此前没有人知道任意组合的魔方的最小还原步数究竟是多少。这一问题困扰了数学家长达三十多年,这个最小还原步数也被称为“上帝之数”。美国app家近日利用计算机破解了这一谜团,研究人员证明任意组合的魔方均可以在20步之内还原,“上帝之数”正式定为20。
 
这支研究团队位于美国加利福尼亚州帕洛阿尔托市。app家们通过计算机计算和证明,任意组合的魔方都可以在20步内还原。这一结果表明,大约有10万多种的起始状态恰好可以在20步内还原。
 
利用谷歌公司计算机强大的计算能力,研究人员检验了魔方任何可能的混乱状态(确切数字为43,252,003,274,489,856,000)。美国俄亥俄州肯特州立大学数学家莫雷·戴维德森教授也是研究人员之一,他表示,“我们现在可以肯定,这个‘上帝之数’就是20。对于我来说,我也回到了原地。魔方伴随着我成长,这也是我为什么深入研究这个数学问题的原因。这个谜团引起了人们的广泛关注,它也许是人类历史上最受欢迎的谜语了。”app家们的初步研究成果发表于网站上,但戴维德森表示,他们准备将研究成果提交给杂志正式发表。
 
程序员托马斯·罗基花了15年的时间,致力于寻找这个谜团的答案。据罗基介绍,研究团队所采用的算法可以在1秒钟内尝试10亿种可能,此前的计算机算法1秒钟内只能处理4000种可能。
 
为了让问题简单化,研究团队采用了一种所谓“群论”的数学技术。他们首先将魔方所有可能的起始状态集分成22亿个集合,每个集合包含了195亿个可能的状态。集合的分配原则是这些可能的状态是如何应对一组10个可能的还原步骤。再通过魔方不同的对称性,这种分组技术使得研究团队将集合数减少到5600万个。
 
研究人员所采用的算法可以快速将这些还原步骤与恰当的起始点匹配起来,从而实现在20秒内处理一个集合中的195亿种可能。对于普通的家用电脑来说,以这样的速度完成整个处理任务需要大约35年时间。
 
2007年,《每日电讯报》曾经报道称,任意组合的魔方均可在26步内还原。当然,还有其他的报道称已证明出更少的还原步骤。魔方由匈牙利埃尔诺·鲁比克教授于1974年所发明,曾经是世界上最畅销的智力玩具。
 
 
 
 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
以下评论只代表网友个人观点,不代表明升手机版(明升中国)观点。 
���� SSI �ļ�ʱ����
 
读后感言:

验证码:
相关手机版 相关论文

图片手机版
>>更多
 
一周手机版排行 一周手机版评论排行
 
编辑部推荐博文

 
论坛推荐